Než začne skutečně fungovat urychlovač LHC a než budou publicisté psát o nových vědeckých poznatcích by bylo dobré se podívat na obecné principy jeho činnosti. Urychlovač částic se používá k dodávání pohybové energie nabitým částicím (protony, elektrony, pozitrony...), které jsou urychlovány rozdílem potenciálů elektrického pole. Urychlovač způsobuje čelní srážky mezi dvěma svazky částic stejného druhu, buď protony, nebo různými typy iontů. Během srážky dojde k rozptýlení částic a pokud mají dostatečnou energii, vznikají přitom další částice. Procesy během srážky zaznamenávají a vyhodnocují částicové detektory. Urychlovače slouží k výzkumu elementárních částic, ale i v technické praxi. Existují dva základní typy urychlovačů: lineární a kruhový.
Podle současných teorií tvoří klasická hmota složená z atomů asi 5% vesmíru. A z těchto pěti procent údajně jen 1 % klasické hmoty vesmíru je vidět v podobě světla hvězd, celých galaxií...
Zbývajících 95% vesmíru stále přesně neznáme. Vůbec netušíme, jaká je podstata takzvané temné energie, která tvoří asi 72% vesmíru. A o 23% procentech vesmíru tvořených temnou hmotou se možná již letos dozvíme více. Koncem měsíce března znovu začnou pokusy na urychlovači LHC, jejichž cílem je objevit částice temné hmoty.
Antihmotu na Zemi nemusíme hledat jen v urychlovačích částic, ale dokonce i v přírodě. Vědci totiž odhalili v pozemských bouřích stopy antičástic - konkrétně pozitronů. Vesmírný teleskop Fermi, který v průběhu každých tří minut zmapuje celou oblohu v spektrální oblasti gama záření, zaznamenal během svých 14 měsíců provozu i 17 záblesků gama záření, které pocházelo přímo z naší planety. Údajně se jedná o gama záblesky z blesků našich běžných pozemských bouří. Vědci si teď lámou hlavu, proč záření z blesků vypadá, jako kdyby neslo stopu výskytu antihmoty.
V laboratoři by se při provádění pokusů nemělo svačit či konzumovat nápoje. Dokonce by se tam při experimentování neměly tyto věci vůbec přinášet. O tom, že je to opravdu nutné, vám nyní mohou vyprávět vědci pracující na urychlovači LHC (Large Hadron Collider) v CERNu. Obří urychlovač, který po rok trvajících opravách už uvádějí do provozu, totiž museli vypnout kvůli úlomku bagety.
Uhlík je hvězdným chemickým prvkem. Jakoby mu nestačilo, že umožňuje veškerý život na Zemi. V posledních letech je o něm čím dál více slyšet i nejrůznějších technologických odvětvích, jejichž společným jmenovatelem je předpona nano-. Za nejperspektivnější materiál, který vykazuje řadu skutečně nečekaných až těžko uvěřitelných vlastností, je považována zvláštní forma čistého uhlíku – grafen. Tvoří jej rovinná síť jedné vrstvy atomů uhlíku uspořádaných do tvaru šestiúhelníků. Tato forma uhlíku má nejenom výjimečné elektrické vlastnosti, ale zdá se, že se dá využít v nanosvětě jako velmi citlivé váhy.
Za některými nádhernými optickými úkazy je schována chemie. Posuďte sami. Ozónová vrstva v zemské atmosféře absorbuje část UV záření (280-320 nm), které má nepříznivé účinky na život na Zemi. Zeslabená vrstva ozonu představuje větší pravděpodobnost průniku UV-B a UV-C záření, které je karcinogenní. Ozónová díra byla poprvé pozorována počátkem 80. let 20. století nad Antarktidou. Její příčina je celkem známa. Od roku 1930 byly vyráběny freony, které byly používány v chladicích a hnacích médiích. Freony nejsou žádné prudce reaktivní látky, jak je veřejnosti stále podsouváno, ale extrémně stabilní molekuly, které mají velmi dlouhou dobu svého života (50 – 100 let). Za tuto dobu života se freony, ačkoliv jsou několikrát těžší než vzduch, dostanou do výšek 10 až 50 km nad Zemí (stratosféry), kde se z nich odštěpuje chlór a fluor, které se podílejí na katalytickém rozkladu ozonu. Snižují tak obsah ozonu ve stratosféře. Proč ale vzniká ozonová díra primárně nad Antarktidou a ne nad nejvíce obydlenými státy produkujícími freony?
Klastry jsou soubory atomů či molekul, které nejsou vázány kovalentními vazbami, ale drží je spolu slabší interakce, jako jsou např. van der Waalsovské vazby nebo vodíkové můstky. Za klastry označujeme systémy od několika málo molekul počínaje diméry, triméry atd. až po konglomeráty několika tisíc i více molekul.Protože rozměry takovýchto částic se pohybují v řádu desetin až několika nanometrů, jsou také často označovány jako nanočástice.
Elektron je stále považován za elementární - to je dále nedělitelnou částici. Představit si jej je ovšem poněkud obtížné. Je odpovědný za vedení elektrického proudu například v kovech. Záporný náboj elektronu a pohyb této částice je také důležitý pro magnetické projevy této částice. Jeho magnetické a elektrické vlastnosti (náboj a spin) byly totiž až donedávna považovány za od sebe neoddělitelné. Přesto se s ním v kvantové fyzice dají dělat věci!
Nejznámějšími formami chemického prvku uhlíku jsou diamant a grafit. Grafitu (tuha) je velmi podobná forma uspořádání uhlíku zvaná grafen. Grafen je materiál složený pouze z jedné nebo dvou vrstev atomů uhlíku, které jsou uspořádány do pravidelné struktury šestiúhelníku vazbami sp2. Jednoatomární vrstva grafenu bez příměsí vykazuje vysokou elektrickou vodivost, dvouatomární vrstva se chová podobně jako polovodič. Elektrony v grafenu dosahují nejvyšší pohyblivosti ze všech známých materiálů. Grafen je nejtenčí a současně nejpevnější materiál na světě.
Vidět samotnou molekulu nebylo až dosud běžné. Týmu švýcarských a holandských vědců z laboratoří výzkumného centra IBM v Curychu se to nedávno podařilo. Získali první trojrozměrný obrázek jediné molekuly velké pouhých 1,4 nanometrů. Zdokonalili metodu mikroskopování a spatřili samotnou molekulu pentacenu - polycyklického aromatického uhlovodíku, který tvoří řada pěti šestiúhelníkovitých benzenových jader.