Při hledání nejmenší a tedy elementární částice jsme se dostali nejprve k pojmu atom. Ten se samozřejmě skládá z elektronového obalu a z atomového jádra. Elektrony v obalu atomu považujeme za elementární a tedy dále již nedělitelné částice.V atomovém jádru jsou protony a neutrony a tyto částice jsou složeny z kvarků. Vzniká však otázka, jsou-li vůbec hranice v dělitelnosti částic?
Nedávno měl premiéru film Andělé a démoni, který natočil Ron Howard podle bestselleru Dana Browna. Producentem filmu je Sony Pictures a u nás jej uvádí Falcon. Hlavní roli má Tom Hanks, ale také laboratoř CERN a antihmota. Film jsem zatím neviděl, a knihu jsem si poslechl v MP3. Ale dokážu si živě představit, jak lidé budou fyzikální aspekty ve filmu brát jako hotovou a pro ně jasnou věc. Proto je potřeba si vysvětlit, jak výroba antihmoty vlastně probíhá a nakolik je popisovaný děj filmu reálný.
Nové materiály velmi rychle pronikají do našeho běžného života. Vzpomínám si, jak se před léty začaly používat všude suché zipy, pak byla hitem "švédská utěrka" s dosud nevídanými schopnostmi. Už na omak působila na pokožku rukou zvláštně a co teprve potom, když se použila na čištění! Krásně na ní ulpěl prach z předmětů, vyčistila dokonale sklo v brýlích či v autě. Tyto produkty z mikrovláken či supermikrovláken jsou zkrátka ideální na veškerý úklid. Tajemství vysoké účinnosti produktů spočívá ve struktuře materiálu, ze kterého jsou vyrobeny.
Válí se vám doma spousta různých nabíječek k nejrůznějším typům mobilních telefonů? Říkáte si, proč už se dávno výrobci mobilů nedohodli na nějakém standartu, který by v podobě univerzální nabíječky fungoval pro všechny typy mobilů? Zapomeňte na nabíječky, do několika let nebudou prý potřeba. Nahradí je sluneční energie, kterou se budou prostřednictvím nanovláken nabíjet mnohá elektrická zařízení sama.
Moderní teorie připisují protonům velmi dlouhou dobu života. Od roku 1986 pozorují japonští vědci v zinkovém dolu u města Kamioka vzdáleného asi
Mikrosvět není náš zmenšený svět, je to svět jiný, který nelze popsat názornými modely našeho makrosvěta. Zmenšit nějaké zařízení na úroveň mikrosvěta tak, aby fungovalo stejně jako v makrosvětě není vůbec snadné. Nicméně doba vyžaduje konstrukci takových miniaturních zařízení například v medicíně pro vykonávání mikrochirurgických zákroků či k dalšímu vhodnému použití. Problémem se stává však princip jejich pohonu a tady se vědci nechali inspirovat jak jinak než přírodou.
Je dobře známo, že při odvíjení lepící pásky vznikají světelné záblesky, které můžeme očima pozorovat ve tmě. Tento jev, zvaný triboluminiscence, sledujeme třeba při drcení krystalků cukru nebo sfaleritu ZnS, zrnek karborunda SiC, křemene či plátků slídy. A také při strhávání lepicí pásky. Obyčejná lepící páska však může při odmotávání produkovat rentgenové záření ve formě krátkých pulsů.
Neutrina jsou elementární částice s velmi malou hmotností a nulovým elektrickým nábojem. Jejich existence byla předpovězena už v roce 1931. Při termonukleárních reakcích uvnitř Slunce jsou produkována v obrovských množstvích, ale protože téměř nereagují s žádnou hmotou, je velmi obtížné je zachytit. Díky této vlastnosti se však dostanou ze středu Slunce na jeho povrch nepozměněné a mohou pokračovat do okolního vesmíru. Z každých 2 miliard neutrin vzniklých uvnitř Slunce je při cestě na povrch zachyceno pouze jediné.
V roce 2008 byla dokončena stavba obřího podmořského detektoru neutrin s vysokou energií. Detektor Antares se nachází 25 km jižně od francouzských břehů na ploše 0,1 km2 v hloubce 2,5 km pod mořskou hladinou. Na stavbě se podílelo 150 odborníků z Francie, Itálie, Španělska, Holandska, Německa, Rumunska a Ruska. Detektor se stane rájem nejenom pro astronomy, ale i pro částicové fyziky a pro vědce zabývající se světem hluboko pod mořskou hladinou. Nové okno do vesmíru bylo otevřeno. Můžeme se těšit na sledování vzniku neutronových hvězd a černých děr, na pozorování jevů v aktivních jádrech galaxií a výzkum samotných neutrin – částic dodnes opředených mnoha tajemstvími.
Z hlediska kvantové elektrodynamiky není kvantové vakuum absolutní nic bez energie, ale má jistou "nulovou" energii a hemží se rejděním virtuálních fotonů, které vznikají a zanikají. Jsou důsledkem kvantových fluktuací, které existují vždy i ve vakuu a při velmi nízkých teplotách kolem absolutní nuly. Virtuální částice nemohou být detektovány, ale mohou produkovat měřitelné reálné jevy, neboť neenergeticky interagují s reálnými částicemi. Jedno z "kouzel" kvantové elektrodynamiky je vznik přitažlivé síly mezi dvěma dokonale vodivými rovnoběžnými deskami ve vakuu, tzv. Casimirův jev. Casimir se přes 50 lety pokoušel pochopit, proč se kapaliny jako třeba majonéza pohybují tak pomalu.