Dva a půl tisíce let po Anaxagorově modelu Slunce jako rudé kouli rozžhaveného železa o něco většího než Řecko se dnes už ví proč Slunce svítí. Slunce je gigantická vodíková bomba. Od zbraně vytvořené lidmi se však liší minimálně ve 2 podstatných ohledech.
Nevinné kouření cigarety na záchodě ve veřejných budovách může mít za následek požární poplach. Prozradit vás může nenápadná krabička upevněná na stropě - jde o ionizační hlásič požáru. Toto zařízení obsahuje radioaktivní materiál a dokáže signalizovat přítomnost ohně.
Fluorescenčními barvami opatřené předměty obsahují chemickou látku, která odebírá z denního světla neviditelné ultrafialové záření a přetváří ho na viditelné světlo stejné barvy, jako má předmět. Ten tedy odráží obvyklé množství barevného světla, ale zároveň aktivně vysílá světlo stejné barvy, proto vypadá barevnější a až čtyřikrát jasnější.
Tak studentům přibude více učiva v chemii a ve fyzice. Budou se muset naučit názvy nových chemických prvků. Komise, která rozhoduje o oficiálním uznání objevu nových chemických prvků a jejich pojmenování, oslovila vědce z GSI Darmstadt v souvislosti s jejich objevem prvku s protonovým číslem 112. Vypadá to tak, že v nejbližší době se snad už konečně rozhodne o oficiálním uznání jejich objevu a pojmenování alespoň některých dalších supertěžkých prvků s počtem protonů větším než 111 až po protonové číslo 118.
Jméno Ivana Puluje zná dnes málokdo. Fyzik Ivan Puluj působí ve světě fyziky jako nějaký Jára da Cimrman. Narodil se v roce 1845 v haličském Hrymalově, maturoval v Tarnopoli, v roce 1869 absolvoval bohosloveckou a v roce 1872 filozofickou fakultu. V letech 1874 -1875 učil fyziku na námořní akademii Rijece, pak pokračoval ve studiu filozofie na univerzitě ve Štrasburku a poté působil jako soukromý docent na univerzitě ve Vídni. A tady jeho zajímavý "cimrmanovský" příběh začíná.
V poslední době znepokojilo světovou veřejnost testování jaderné nálože v Severní Korei. Málokdo však ví, že jaderné nálože explodovaly i v Evropě v době studené války. Sovětský svaz však vždy vojenské informace tajil. O použití jaderných náloží pochopitelně nesměli vědět ani lidé, kteří v blízkosti výbuchů žili a třeba je dokonce i viděli na vlastní oči. Až v devadesátých letech minulého století se začalo toto tajemství pozvolna odhalovat.
Od dob řeckého filozofa Demokrita žilo lidstvo ve filozofické představě nejmenších částic - atomů. Až v roce 1803 došel k chemickému pojmu atom J. Dalton, který předpokládal po svém objevu zákonitostí slučování látek, že molekuly látek jsou tvořeny dále nedělitelnými částicemi - atomy. Tato 100 let stará představa padla díky vědeckým pracem Fredericka Soddyho v roce 1910.
V brýlích se dnes využívá tolik zajímavých fyzikálních jevů, kterým zákazník oční optiky ani nerozumí, hlavně že ho brýle poslouchají. Dnes se zaměříme na zajímavou vlastnost skel či plastů v brýlích – samozabarvování.
Radioaktivní nebezpečí nečíhá na nás v jaderných elektrárnách, ale přímo v našich domovech. Česká kotlina patří k lokalitám s největší koncentrací uranových rud a existují zde proto rozsáhlá území se zvýšeným výskytem vyvěrajícího plynu - radonu.
K jadernému reaktoru vás v atomové elektrárně běžně nepustí a proto popisovaný jev uvidíte nejspíše na fotografiích nebo na videu. Z nádrží jaderných reaktorů, kde se uranové palivo nachází v kapalině sloužící jako moderátor neutronů, vychází krásný modravý svit. Jde o jev zvaný Čerenkovovo záření (Čerenkovův efekt), což je elektromagnetickou obdobou zvukové rázové vlny. Částice, která se pohybuje v optickém prostředí rychleji, než je fázová rychlost světla pro toto prostředí, vyvolává záření, které trvá po tu dobu, kdy je částice rychlejší než světlo. Prakticky se Čerenkovova jevu využívá ke zkoumání pohybu částic vysoké energie, na jeho principu se konstruují speciální detektory (tzv. Čerenkovovy detektory), jimiž je možno měřit energii těchto částic.